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Determination of a flow generating a neutral magnetic mode
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The problem of the reconstruction of a flow of conducting incompressible fluid generating a given magnetic
mode is considered. We use the magnetic induction equation to derive ordinary differential equations along the
magnetic field lines, which gives an opportunity to determine the generating flow if additional data is provided
on a two-dimensional manifold transversal to magnetic field lines, and show that an arbitrary solenoidal vector
field cannot be a neutral magnetic mode sustained by any flow of conducting fluid, unless a scalar consistency
condition is satisfied at every point within the fluid volume.
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I. INTRODUCTION

According to the modern scientific paradigm, magnetic
fields of astrophysical objects, ranging from planets to gal-
axies, are often sustained by conducting fluid flows [1-5] for
instance, driven by convection in the melted medium in plan-
etory interiors (the modern state of the theory of natural dy-
namos is reviewed in the collections of lectures [6-8]).
These processes are governed by the Navier-Stokes and mag-
netic induction equations (supplemented by other equations,
such as heat equation and rheology relations, as appropriate).
However, it is difficult to study them numerically because of
the extreme parameter values involved, which require pro-
hibitively high resolution of simulations. Thus, application of
analytical or semianalytical methods to the study of astro-
physical dynamos appears unavoidable. In the present paper,
we suggest an approach, in principle enabling one “to sepa-
rate” the two fundamental equations; hopefully, this can be
useful for the investigation of asymptotics of astrophysical
dynamos.

Usually, the magnetic induction equation is employed for
the investigation of the evolution of magnetic field for a
given flow of incompressible conducting fluid (which is pre-
defined in kinematic dynamo problems, or supposed to
evolve simultaneously when nonlinear dynamos are studied).
We consider here an inverse problem, investigating the con-
sequences existence of a neutral magnetic mode bears upon
the generating flow. We show how the flow can be recon-
structed uniquely up to the data, which must be provided on
a two-dimensional manifold transversal to magnetic field
lines. We demonstrate that an arbitrary solenoidal vector field
cannot be a magnetic mode sustained by any flow of incom-
pressible fluid, unless the field satisfies a consistency equa-
tion in the fluid volume. We hope that such an analysis may
be useful, in particular, for examination of asymptotical
properties of various steady magnetohydrodynamic systems
and their stability.

In recent numerical studies of nonlinear magnetic dyna-
mos acting in plasma [9] and fluid [10-12] flows with a
prescribed forcing, as well as in thermal convection in a
horizontal layer of conducting fluid rotating about a vertical
axis [13,14] or in the absence of rotation [15,16], it was

1539-3755/2009/80(3)/036310(5)

036310-1

PACS number(s): 47.65.—d, 91.25.Cw, 41.20.Gz

discovered that temporal evolution can result in emergence
of a steady state with a nonvanishing magnetic field. Mag-
netostatic equilibria in ideal plasma were discussed in [17].
A magnetic field of a steady configuration is a neutral mag-
netic mode, i.e., a vector field belonging to the kernel of the
magnetic induction operator. Neutral magnetic modes play
an important role in large-scale dynamos [18-21].

We therefore focus on neutral magnetic modes in our
analysis. However, a straightforward modification of our ap-
proach can be applied for the reconstruction of flows for
eigenfunctions of the magnetic induction operator associated
with any given eigenvalue, or for arbitrary evolving mag-
netic fields.

II. RECONSTRUCTION OF FLOWS
Consider the magnetic induction equation
db=7V’b+V X (uXb). (1)
Magnetic field is solenoidal
V.-b=0. (2)

In a steady state, magnetic field is a neutral mode of the
magnetic induction operator. For a given flow u and molecu-
lar diffusivity 7, the operator is elliptic. If magnetic field
generation in a bounded volume of fluid is considered and
regular boundary conditions for magnetic field are imposed,
it has a discrete spectrum, with the eigenvalues tending to
—o. For a randomly chosen pair 7,u, the kernel of the op-
erator does not contain mean-free magnetic fields, and ge-
nerically the only mean-free solution is b=0.

The processes bringing the system to a steady state thus
can be viewed as adjustment of the flow to a configuration
allowing for a nonzero neutral mean-free magnetic mode. It
is natural therefore to treat (1) as an equation in u. “Uncurl-
ing” it, one obtains

7V Xb=uXb-7Va, (3)

where a is a scalar function (the constant factor 7 is intro-
duced for convenience).

Consider separately the components of Eq. (3) parallel
and perpendicular to b. Scalar multiplying Eq. (3) by b find
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(b-V)a=-b-(VXb). (4)

The equation controls the magnitude of a magnetic field,
whose direction is prescribed: substituting b=|bli, where iy
is a unit vector collinear with b, and expanding the curl in
the right hand side of Eq. (4) one obtains

—
|b|=—M

iy (VX ip) ©)

If a magnetic force line is a closed loop (including the loops
emerging due to spatial periodicity), then by virtue of Eq. (4)

%iB-(VXb)dsz—ﬂg(iB-V)ads=O

[the parameter s on the curve is the distance along the curve
from a fixed point on it], which can be also viewed as a
constraint on the magnitude of the magnetic field [following
from Eq. (5)].

The component of Eq. (3) perpendicular to b is accessed
by cross-multiplication of Eq. (3) by b, yielding

7b X (VX b+Va)=u/bl>-b(u-b).

The component of u parallel to b is not determined by Eq.
(3), hence (u-b) remains an unidentified arbitrary scalar
function. We denote

(u-b) =1+ na,
[bf?
implying
u=(1+7na)b+neXx(VXb+Va), (6)
where
e=b/|b]>.

Equations (6) and (4) together are equivalent to the equation
for a neutral magnetic mode. The scalar field « satisfies the
equation

b-VYa+V-[exX(VXb+Va)]=0, (7)

equivalent to the solenoidality condition for the flow u.

Now, in order to find the flow velocity (6), we need to
determine Va, which we do by employing the solenoidality
condition for the flow. Generically, iz and V X e are not par-
allel, and in this case, Egs. (4) and (7) are equivalent to the
equation

Va =AiA+BiB+ Cic, (8)
where i,, ig, ic is an orthonormal basis,
V Xe-[ig- (VX e)lig

_ S
T W xe—[iy (Vxeiy “_ 2 'e

B=—ig-(VXb)=-|bliz- (VXip), 9)

_ (B/|b])>~(b-V)a-V-[e X (VXb)]
= Wxelip Wxong 1Y

We derive from Eq. (8) individual equations in A and C.
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The solvability condition for Eq. (8) is obtained by taking
its curl

OZVAXiA+AV XiA+VB><iB+BV XiB
+VC Xic+CV Xig. (11)

Scalar multiplying it by iy, ig, and i, one finds

A=[—CiA(inc)—(iBV)C—BiA(V XiB)

+(ic- V)B/[is - (V X iy)], (12)
B2
0=Aiz- (VX iA)+(iC-V)A—m
+Cig- (VX ip) = (i, - V)C, (13)

C=[-Aig- (VX iy)+ (i V)A - Big- (V X ip)
= (iy- V)BJ/[ic- (V Xig)], (14)

where B is defined by Eq. (9). Substitution of Eq. (12) into
Eq. (14) yields a second-order differential equation along
magnetic force lines, in principle, defining C. Initial condi-
tions for this equation must be set on two-dimensional mani-
folds, transversal to magnetic force lines. They must assure
geometric consistency: the solutions along closed force lines
must be periodic. For force lines, intersecting with the
boundary of the region occupied by the fluid, it is naturally
to set the conditions on the boundary. The data can be pro-
vided on two manifolds, crossing a force line; in this case
one obtains a boundary value problem for C. In turn, a can
be found, in principle, from Eq. (10). This completes recon-
struction of the flow. [The divergence of Eq. (8) yields an
equation in a, which can be used to find the potential itself. ]
Substituting A Eq. (12) and C into Eq. (13), one obtains an
equation in b. Thus, not every solenoidal field can be a mag-
netic neutral mode; the scalar consistency equation (13) con-
strains, together with the solenoidality condition, a neutral
mode up to a scalar field.

Implementation of this program can become particularly
difficult in the presence of magnetic nulls, i.e., points, where
magnetic field vanishes. (This is clear, of course, already
from the definition of the vector field e, which becomes sin-
gular at the nulls). Topology of magnetic field with null
points and its bifurcations during reconnections are studied
in detail in solar magnetohydrodynamics (MHD) [22-26]—
they are presumed to be of fundamental importance for oc-
currence of sudden explosive energy release events, solar
flares, in the Sun’s corona. In the vicinity of a null point,
magnetic field exhibits an approximately linear behavior
controlled by the Jacobian ||db;/dxj|. Solenoidality of the
magnetic field implies that the sum of the three eigenvalues
of this matrix vanishes. Hence, generically, it has two eigen-
values with real parts of the same sign, and an eigenvalue of
an opposite sign. Consequently, one can identify a two-
dimensional manifold of magnetic force lines behaving
coherently—all approaching the null point or all departing
from it (if the two eigenvalues have negative or positive real
parts, respectively) and a one-dimensional manifold (a force

036310-2



DETERMINATION OF A FLOW GENERATING A NEUTRAL...

line), exhibiting the behavior of the opposite kind. In the
parlance of solar physics, the two-dimensional manifold is
the fan, and the one-dimensional manifold the spine of the
null (see Fig. 1 in [27]). Therefore, in our problem, there are
infinitely many characteristics (force lines constituting the
fan, and the spine), which must bring the same values of A
and C to (or take the same values from) the null point, im-
plying that the problem of consistency of the global solution
for the flow arises. The situation is further complicated by
the fact that iz is typically discontinuous at null points (its
direction is not well-defined), and hence i, and i, are discon-
tinuous as well.

Thus, the presence of magnetic null points is likely to
result in a discontinuity of the reconstructed flow, but they
are not the only source of troubles. More generally, our for-
malism becomes ill-defined at the points, where the magnetic
field b is parallel to V Xe, since there i, is not correctly
defined. If a magnetic force line crosses the boundary at two
points, a problem arises in satisfying the boundary conditions
for the flow at the two points.

III. AXISYMMETRIC MAGNETIC NEUTRAL MODES

Equations (12)—(14) suggest that the complexity of the
problem depends considerably on the geometry of magnetic
force lines. For instance, reconstruction of the flow is diffi-
cult, if force lines exhibit a chaotic spatial behavior. We con-
sider here one of the simplest examples of an axisymmetric
magnetic neutral mode

b =b(p,2)i,,

(p.¢.z) being a cylindrical coordinate system and i,.i,.i,
the respective unit vectors.

Before we formulate the system of Egs. (12)—(14) in the
variables A and C, which we need to solve in order to recon-
struct the flow (6), we derive some useful properties of the
basis iy, ig, ic. Curls of azimuthal and poloidal vector fields
independent of ¢ are, respectively, poloidal and azimuthal;
this implies the orthogonality

iy (VXiy)=ig- (VXipg)=ig-(VXe)=ig-(VXig)=0.
(15)

lB = l‘P’

By a simple calculation,

VXe ( k., ¢9K.>
=h|-—i,+—i.],

1=
¢ |V X e az? ap
where
p 1
k(p,z) = b h(p,z) = |V_K;
hence
iAEiBXiC=hVK.
Therefore,

ic (VXiy)=ig (VA X Vi) =0,

since none of the factors in the triple product has an azi-
muthal component. By vector algebra identities,
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iy (VXig)—ic- (VXiy)==V-(iy Xig)=V-i,=0,
implying
iy (VXiQ)=ig- (VXiy,)=0. (16)
Now, scalar multiplying Eq. (11) by i,, ig, and i- and em-
ploying Eq. (15) (in particular, B=0) and Eq. (16), one ob-
tains equations
acC
=—, (17)
de
0=AiB . (V X iA) + (iC V)A+ CiB (V X ic) - (iA . V)C,
(18)
0A
0=— (19)
de
[which are now significantly simpler than Eqgs. (12)-(14) in
the general case]. Equations (17) and (19) are equivalent to

C=C(p,z), (20)

A=A(p.2). (21)
For an axisymmetric magnetic field, Eq. (10) takes the form

P
(9—a=_|V><e|C—V-[e><(V><b)].
@

Consequently, Eq. (20) and geometric consistency (27-
periodicity of « in ¢) imply that a=a(p,z) is an arbitrary
function [together with the relations (20) and (21), and B
=0, this formally confirms a physically obvious fact, that a
flow generating an axisymmetric magnetic field is necessar-
ily axisymmetric], and Eq. (20) is superceded by

_V-[e><(V><b)]

C=
|V X e

(22)

Now A must be determined from Eq. (18). We introduce
characteristics [R(s),Z(s)] in the (p,z) half-plane; they sat-
isfy the ordinary differential equations

o = (R(5)2(5) = (R(5). 25).
s dz

dz oK

— =h(R(s),Z(s)) —(R(s),Z(s)).

ds ap
Direct differentiation shows that the characteristics are iso-
lines of the scalar field b(p,z). Since along a characteristic
ah dk l(&hdZ ahdR) 1dh
T _ e, 2

dzds dpds

(VX)) dh dk
1p 1 = - =
B VT ozap dpdz h

Eq. (18) takes the form

" hds’

d
a(Ah) =f,

where
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f=h((i,-V)C-Cig-(VXig)
and C is given by Eq. (22). Consequently,

A[R(s),Z(s)] = (A(R(O),Z(O)]h[R(O),Z(O))

+ff(R(s’),Z(s’))ds’)/h(R(s),Z(s)).
0

(23)

If a characteristic is a closed orbit of period S, geometric
consistency implies that over this orbit

s
f f(R(s"),Z(s"))ds' = 0. (24)
0

Thus, we have determined Va and the flow (6) [to the extent
this is permitted by the natural nonuniqueness of solutions to
Eq. (1) in u].

The well-known Cowling antidynamo theorem states that
generation of smooth axisymmetric magnetic fields (includ-
ing steady ones) of finite total energy is impossible. Two
proofs of the theorem (following [28,29]) are presented in
[1]. The demonstrations rely on the equation of total mag-
netic energy balance derived for a smooth axisymmetric flow
of incompressible fluid, provided the normal component of
velocity vanishes on the boundary of the region where the
fluid resides. To reconcile our results with the Cowling theo-
rem, we note that the flow that we obtain will not satisfy
some of these conditions. It may be singular on the circles,
where =0, or k has extrema (and then e or & are singular,
respectively). If the volume occupied by the flow is bounded,
it cannot be guaranteed that the normal component of the
fluid velocity vanishes everywhere on the boundary (or, al-
ternatively, enforcing this condition creates a discontinuity in
the flow). Hence, the standard procedure employed to estab-
lish the total magnetic energy balance equation will reveal
additional sources of magnetic energy, which emerge be-
cause the flow is not smooth or the surface integral repre-
senting the contribution of the advective term does not van-
ish; under such circumstances the Cowling theorem is
inapplicable.

We have presented the analysis of this section mainly as
an illustration of how the proposed formalism might be ap-
plied to reconstruct flows for less trivial magnetic field con-
figurations. However, in addition, it provides useful informa-
tion in regard to the following technical issue: Although we
have stated at the end of the previous section that Eq. (13) is
a constraint for a neutral magnetic mode, we have not yet
produced any evidence, that the Eqs. (12)—(14) are indepen-
dent. Equations (17)—(19), which we have derived consider-
ing this particular example, demonstrate that Eq. (13) is not a
consequence of Egs. (12) and (14) and solenoidality of mag-
netic field.

IV. CONCLUDING REMARKS

We have shown in Sec. II that reconstruction of an incom-
pressible flow (6) from the structure of a magnetic mode
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consists of solution of Egs. (12) and (14) in A and C, fol-
lowed by solution of Eq. (10) in a. These equations are
ordinary differential equations along magnetic force lines;
thus, the problem becomes complex, if the force lines exhibit
a chaotic behavior. For a solenoidal vector field to be a neu-
tral magnetic mode, it must satisfy the constraint (13).
Substitution of Eq. (6) into the momentum equation

Wa+uX (VXu)-bX(VXb)-Vp+F=0
yields an equation in b

W1+ na)b+ 7e X (VX b+Va)]+ (1 + na)b + ne
X (VXb+Va)] X{VX[ab+eX (VXb+Va)l}
+7lab+e X (VXb+Va)] X (VXb)-Vp+F=0,

(25)

comprising a closed system of equations together with the
solenoidality condition (2). Relation (13) now becomes a
constraint on the acceptable fluid forcing F.

Analysis of the dependence of steady or evolving magne-
tohydrodynamic systems on small viscosity and magnetic
diffusivity is a notoriously difficult problem. The structure of
Eq. (25) may turn out to be advantageous for the study of
asymptotics of MHD steady states, when the force F is of the
order of small quantities ¥~ 7, as it is in nonlinear dynamos
with energy equipartition [11,12]. [The form of the scalar
factor in front of b in Eq. (6) has been chosen so that all
terms in Eq. (25) were, in this case, of the same order of
smallness.

In Sec. III, we have considered an example of the recon-
struction problem for axisymmetric neutral magnetic modes.
This particular case has proved to be highly degenerate: the
denominators in Egs. (12) and (14) vanish identically, and
the respective components of Eq. (11) just testify that Va is
an axisymmetric vector field. Relation (13) does not con-
strain further the structure of the magnetic field, but rather
defines, by Eq. (23), the component A of Va. Initial condi-
tions A(R(0),Z(0)) for solutions (23) of Eq. (18) along char-
acteristics can be chosen on curves in the (p,z) half-plane,
which are transversal to magnetic force lines. The azimuthal
component of the flow velocity, (1+7a)b, is an arbitrary
axisymmetric scalar field (in this case it is controlled neither
by the magnetic induction equation nor, due to independence
of ¢, by the solenoidality condition). Thus, the reconstructed
flow is unique up to the data, which must be specified on
two-dimensional manifold(s) [the scalar field « on the (p,z)
half-plane] and on one-dimensional curve(s) on this half-
plane [the initial conditions A(R(0),Z(0))].

The initial data must be smooth so that the resultant field
A had no singularities. If the topology of isolines of the mag-
nitude of magnetic field b is nontrivial, the smoothness of the
initial data is insufficient; for instance, geometric consistency
requires that the integral (24) over any closed magnetic force
line vanishes. If the axis of symmetry intersects with the
volume occupied by the fluid, axisymmetry gives rise to an-
other problem: regularity of the magnetic field implies
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b(0,z)=0; consequently, the term e X (VXb) in Eq. (6)
tends to infinity for p— 0. Thus, the flow is nonsingular only,
if initial conditions for A compensate for this singularity.
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